If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2-5t-50=0
a = 10; b = -5; c = -50;
Δ = b2-4ac
Δ = -52-4·10·(-50)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-45}{2*10}=\frac{-40}{20} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+45}{2*10}=\frac{50}{20} =2+1/2 $
| 675=30x5 | | 4.4x=1 | | 4(x+5)-6(2x+3)=3(x+14)-2(5x)+9 | | 1.2x=0.85x=x+40 | | -0.2x=-20 | | 2(3x-1)-(x+14)=9 | | 36x^2-27x+14=0 | | 8x-2(2x-1)=18 | | 16-17y=32+31y | | 4.2x-2.3=1.9x | | -7y-16=6y+62 | | K+14k=180 | | x+6.5=25 | | 24x(10)x+19x=76x-(9x+2) | | 3(m+2)=14 | | 10a+5+15=5(2a+8) | | 600-4x2-120x=0 | | 324-72x+4x2=0 | | 324x-72x2+4x3=0 | | -5.5=10j | | -9.55j=5.5 | | 8x-23=141 | | 2x-2-2x+3=x-1 | | 10/6=7x | | 18x-15=20x+5 | | 3(6x-5)-7(3x+10)=0+ | | -3(w-2)=-6w+27 | | 9y-18=7(y-4) | | 4(x-5)=2x-34 | | N+15=25n=10 | | 7v-30=3(v+2) | | -5=5(v-5)-7v |